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7. Information Systems: Performance of Short Constraint
Length Convolutional Codes and a Heuristic
Code-Construction Algorithm, . w. Layland

a. Introduction. The simulated bit-error performance
of short constraint length convolutional codes discussed
in SPS 37-54, Vol. 111, pp. 171-177 has created consider-
able interest, both at JPL and elsewhere, in the application
of Viterbi’s optimal decoding algorithm to actual com-
munications. However, the original simulation results in-
cluded only three codes, thus providing only a part of the
information needed to make a decision on the design con-
straint length of a hardware optimum convolutional de-
coder. The decoder would be able to decode at least one
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code of each constraint length less than or equal to the
design constraint length, but none larger.

This article presents simulated bit-error probability
curves for convolutional codes of constraint lengths K = 3
to K = 10. The K = 3 and K = 4 codes are those discussed
previously (SPS 37-54, Vol. I11, pp. 171-177 and SPS 37-58,
Vol. II1, pp. 50-55). All codes of longer constraint length
were constructed using a hill-climbing algorithm dis-
cussed in Paragraph b of this article. The simulated bit-
error rates were obtained using the software optimum
convolutional decoder described in SPS 37-62, Vol. II,
pp. 61-66.

b. The code-construction algorithm. A convolutional
code with constraint length K and rate 1V is normally
represented as a shift register of length K coupled with
V multi-input mod-2 adders. Each information bit to be
encoded is shifted into the shift register and the outputs
of the V adders are sampled and transmitted sequentially.
Such a code can be made into a block code of h informa-
tion bits and V(K -+ h — 1) channel symbols by requiring
that all information bits before time 1 and after time h
be identically zero. This is the technique used to deter-
mine the best known bounds to the free-distance of a
convolutional code. (SPS 37-50, Vol. III, pp. 248-252.)

In a similar manner, one may approximate the bit-error
probability of the convolutional code by considering only
those error patterns that differ from the true sequence
only in h or less consecutive positions. If the contribution
to the bit-error probability from error events of length
longer than h is sufficiently small, this will be a good
approximation to the bit error probability. Since the free-
distance bound becomes increasingly loose as h increases
beyond a critical value, there seems to be some heuristic
justification in assuming that there is a value of h, not
too large, such that the contribution to the bit-error proba-
bility from error events longer than h is negligible.

Let I; represent a bit sequence that is the binary expan-
sion of the integer i, C«I; represent the coder output
sequence corresponding to the input I;, and W, (x) be
the Hamming weight of the sequence x. Then a “union
bound” to this approximate bit-error probability is given
by (Ref. 1)

W, (Cx1,) Ey
h = E ‘ MR SLLVel}
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i odd
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where Ej is bit energy, and N, is the one-sided noise spec-
tral density, assumed white and Gaussian. This bound, in
turn, is upper bounded by

ano1

~ W, (C+1)E \
P < P = W, (I,) exp ——”—(—-l—b 2)
e ‘/ . 2\70
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The code construction technique discussed here uses
Pi* as a measure of the performance of the code. A hill-
climbing algorithm is given that makes changes in the
code’s parity check equations; these changes effect the
steepest descent in P;*. The specific algorithm is as fol-
lows: Select a set of parity check equations from which
to begin. This starting point may be arbitrary, but the
most success has been achieved using check equations
that are either all “zeros,” or else have “ones” at the first
and Kth positions only. P;* is computed for this starting
code and for all V- K alternate codes within a radius-one
Hamming neighborhood of the original code; i.e., all
codes that differ from the original code in exactly one
position. The code with the smallest P;* is selected as the
starting code for the next iteration. The process termi-
nates when none of the alternate codes have smaller P
than does the base code of that iteration. No provision
is made to prevent catastrophic error propagation in the
constructed code. If the final code is catastrophic, the best
alternate code from the last iteration is usually the desired
code. If not, a small amount of trial-and-error searching
will locate a good non-catastrophic code within a radius-
two Hamming neighborhood of the terminal code.

Construction of the codes discussed in this article has
been performed in all cases with the block-size h = K,
K+1, or K—2, and with exp{—E, V-N,} =0.1
When starting from check equations with very few “ones,”
the algorithm has been observed to always add “ones,”
resulting in termination in approximately KV 2 steps,
after examining about 2(KV)* codes, a small subset of
the 257 possibilities. Since the algorithm uses P:* only
for selecting a code change, P;* need be completely com-
puted for only one code, with Pi/,j=h, computed for
all others. The index j need only be large enough to
guarantee that these codes are poorer than the chosen

code.

The results obtained with this algorithm are aptly illus-
trated by Fig. 26, which compares the simulated bit-error
probability of the K=18, V =3 code constructed with
the algorithm and the K =8, V = 3 code constructed by
J. Odenwalder using a global search of all codes with a
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Fig. 26. Bit error probabilities of two
K =8,V =3 codes

free-distance criterion as code performance (Ref. 1). The
algorithm is thus not only an easy way to construct rea-
sonably good codes, but perhaps the best way to construct
codes for the bit-error probabilities presently of interest
in space communications.

c. Simulation results. Figure 27 shows the simulated
bit-error rate for eight convolutional codes with K =3
to K = 10, when decoded by Viterbi’s optimal decoding
algorithm. The random noise was produced by the
multiplicative-congruential generator ultimately adopted
by Heller (SPS 37-56, Vol. 111, p. 83). Codes in this figure
are represented in octal, e.g., ‘313 represents the K = 3,

V' = 2 code which has
101
111

for its parity-check equations, and 7567 represents the
K =4,V =3 code,

1111
1011
1101

As expected, bit-error performance is monotonic improv-
ing with constraint length, but the rate of improvement
diminishes rapidly at K = 8§ or K = 10.
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Fig. 27. Bit error probabilities of eight convolutional
codes, K=3to K=10

The effect of the code rate is illustrated in Fig. 28,
which shows simulated bit-error rates for three K =35
codes with rates V=2, V =3, and V=4. The rate
V =4 code is given in hexadecimal notation with the
symbols 0 to 9, A to F representing integers 0 to 15. The
variation of the bit-error rate with code rate occurs simi-
larly at other constraint lengths and agrees well with the
behavior of the noisy-channel error rate exponent (Ref. 2).

d. Decoder complexity. An interesting view of the value
of coding may be obtained by examining the “complexity”
needed to achieve a design-goal bit-error rate as a func-
tion of the E;/N, (Refs. 3 and 4). The complexity of an
optimum convolutional decoder is approximately

x = 5K+ 261 <2+ Llog2<£<2£>_l +Q>2K

+ (Llog. (V)] + Q)27 3)
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Fig. 28. Bit error probabilities of K = 5 codes
ofrate V=2, V=3, and V=4

The notation | x| represents the least integer greater than
x and Q is the number of bits of quantization per symbol.
Only the major components of the decoder are contained
in Eq. (3). The first term is survivor storage, the second
represents the state metric, and the last is caused by com-
puting branch correlations.

Figure 29 shows the complexity as a function of the
E,/N, needed to achieve a 5 X 10-* bit-error rate for the
eight codes of Fig. 27. When presented in this form,
the codes with 3 < K < 6 appear to be the most desirable.
For K > 7, the decoder complexity increases at a much
faster rate than the required E;/N, decreases.

Also shown in Fig. 29 for comparison is the complexity
of the decoder for a bi-orthogonal block code at 5 X 10-*
bit-error probability. The block decoder is the optimally
organized “Green machine” (SPS 37-39, Vol. IV, pp. 247-
252). For both the block and convolutional decoders, 4-bit
channel symbol quantization is assumed. At any fixed but
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Fig. 29. Variation of decoder complexity with E;/N,
needed to achieve a 5 X 1072 bit-error probability for
the eight codes of Fig. 27

moderately large complexity, the convolutional codes re-
quire about 0.6 dB less E;/N, to achieve the 5 X 10-3
bit-error probability than do the comparable block codes.
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8. Information Systems: Synchronizability of
Convolutional Codes, J. W. Layland

a. Introduction. There has been considerable interest
recently in the practical application of Viterbi’s optimal
algorithm for decoding convolutional codes. Much of this
interest arose as a result of the simulation work performed
by Heller (SPS 37-54, Vol. 111, pp. 171-177). These simu-
lations, and most others, have assumed that branch syn-
chronization is known to the decoder; i.e., that the decoder
is informed as to which subgenerator of the code generates
each symbol, and need not determine this from the code
itself. Final coder synchronization is then achieved auto-
matically by the decoding algorithm itself.

Although branch synchronization could be established
by the use of a sync sequence periodically inserted into the
data, it is much more desirable to use some property of the
code itself for this purpose. For a block code, the comma-
free property provides a sufficient means to establish
synchronization in the Mariner Mars 1969 High-Rate
Telemetry System. It seems intuitive that the sub-
generators of any good code will be dissimilar enough
that improper branch synchronization would be easily
identified statistically, using the assumption that the data
source is random. The truth of this notion is demonstrated
by the simulation results presented in Paragraph e of this
article. Synchronization can be achieved with more
certainty, however, if some property can be found which
will guarantee that only a finite number of code symbols
need to be examined to identify a branch sync error.
Paragraphs b and ¢ determine the conditions that must be
placed upon a convolutional code for this property to exist.

b. Convolutional codes. In its standard form, a con-
straint length K convolutional code with rate 1/V is rep-
resented as a shift register of length K, coupled with V
parity-check adders. Each data bit to be encoded is shifted
into the coder register and the oldest bit therein is shifted
out. The V parity-check adders are then sampled sequen-
tially and these binary symbols are transmitted through
a channel. Figure 30 shows the encoder, channel, and
decoder and the coder state diagram for a constraint
length 3, rate % code. The output symbols for each state
transition appear above each branch, and the input data
bit appears below.

The channel adds a sample of white gaussian noise to
each symbol. Since the channel does not explicitly provide
synchronization information, the first symbol received by
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